67. Para una demostración rigurosa del teorema 2.9.1, la regla de diferenciación de la potencia (para potencias racionales), ¿pudo haberse empleado el procedimiento del ejercicio 66 en lugar del que se presentó en la sección? Explique su respuesta.

68. Calcule \((f \circ g)'(0)\) si \(f(x) = x^6 + 7x^3\) y \(g(x) = x^{1/3}\). Explique por qué no se puede emplear la regla de la cadena para efectuar este cálculo.

2.10 TASAS DE VARIACIÓN RELACIONADAS

Un problema de tasas de variación relacionadas es aquel que involucra tasas de variación de variables relacionadas. En aplicaciones del mundo real que implican tasas de variación relacionadas, las variables tienen una relación específica para valores de \(t\), donde \(t\) es una medida de tiempo. En general, esta relación se expresa mediante una ecuación, la cual representa un modelo matemático. Esta sección se inicia con un ejemplo ilustrativo que muestra el camino paso a paso de cómo se resuelven la mayoría de los problemas de tasas de variación relacionadas.

EJEMPLO ILUSTRATIVO 1

Una escalera de 25 pie de longitud está apoyada contra una pared vertical como se muestra en la figura 1. La base de la escalera se jala horizontalmente alejándola de la pared a 3 pie/s. Suponga que se desea determinar qué tan rápido se desliza hacia abajo la parte superior de la escalera sobre la pared cuando su base se encuentra a 15 pie de la pared.

Paso 1 Primero defina las variables comenzando con \(t\).
- \(t\): el número de segundos del tiempo que ha transcurrido desde que la escalera comenzó a deslizarse hacia abajo sobre la pared.
- \(x\): el número de pies de la distancia desde la base de la escalera a la pared a los \(t\) segundos.
- \(y\): el número de pies de la distancia desde el piso a la parte superior de la escalera a los \(t\) segundos.

Paso 2 Escriba cualquier hecho numérico acerca de \(x\), \(y\) y sus derivadas con respecto a \(t\).
Como la base de la escalera es jalada horizontalmente alejándola de la pared a 3 pie/s, \(\frac{dx}{dt} = 3\).

Paso 3 Escriba lo que desea determinar.
Se desea determinar \(\frac{dy}{dt}\) cuando \(x = 15\).

Paso 4 Escriba una ecuación que relacione a \(x\) y \(y\).
Del teorema de Pitágoras,
\[
y^2 = 625 - x^2 \tag{1}
\]

Paso 5 Derive los dos miembros de (1) con respecto a \(t\)
\[
2y \frac{dy}{dt} = -2x \frac{dx}{dt}
\]
\[
\frac{dy}{dt} = \frac{x}{y} \frac{dx}{dt} \tag{2}
\]
Paso 6 Sustituya los valores conocidos de \(x \) y \(\frac{dx}{dt} \) en la ecuación anterior y resuelvala para \(\frac{dy}{dt} \).

Cuando \(x = 15 \), de (1) \(y = 20 \). Como \(\frac{dx}{dt} = 3 \), se obtiene de (2)

\[
\frac{dy}{dt} \bigg|_{y=20} = -\frac{15}{20} \cdot 3
\]

\[
= -\frac{9}{4}
\]

El signo menos indica que \(y \) decrece conforme \(t \) aumenta.

Paso 7 Escriba una conclusión.

Conclusión: La parte superior de la escalera se desliza hacia abajo sobre la pared a la tasa de 2.25 pie/s cuando la base está a 15 pie de la pared.

Ahora se hará un resumen de los pasos del ejemplo ilustrativo anterior. Ellos le darán un procedimiento a seguir. Conforme lea los ejemplos siguientes, refiérase a estos pasos para ver cómo se aplican.

Sugestiones para resolver un problema de tasas de variación relacionadas

Lea el problema cuidadosamente de modo que lo entienda. Para poder entenderlo, con frecuencia es útil inventar un ejemplo específico que contemple una situación semejante en la que todas las cantidades sean conocidas. Otra ayuda es dibujar una figura, si es factible, como en el ejemplo ilustrativo 1 y los ejemplos 1, 2 y 4. Después aplique los siguientes pasos.

1. Defina las variables de la ecuación que obtendrá. Debido a que éstas representan números, las definiciones de las variables deben indicar este hecho. Por ejemplo, si el tiempo se mide en segundos, entonces la variable \(t \) debe definirse como el número de segundos de tiempo \(o \), equivalentemente, \(t \) segundos es el tiempo. Asegúrese de definir primero \(t \), y las otras variables deben indicar su dependencia de \(t \).
2. Escriba los hechos numéricos conocidos acerca de las variables y de sus derivadas con respecto a \(t \).
3. Escriba lo que se desea determinar.
4. Escriba una ecuación que relacione las variables que dependen de \(t \). Esa ecuación será un modelo matemático de la situación.
5. Derive con respecto a \(t \) los dos miembros de la ecuación obtenida en el paso 4 para relacionar las tasas de variación de las variables.
6. Sustituya los valores de las cantidades conocidas en la ecuación del paso 5, y despeje la cantidad deseada.
7. Escriba una conclusión que consista de una o más oraciones completas y que responda las preguntas del problema. No olvide que la conclusión debe contener las unidades correctas de medición.
EJEMPLO 1
Cierta cantidad de agua fluye a una tasa de 2 m³/min hacia el interior de un depósito cuya forma es la de un cono invertido de 16 m de altura y 4 m de radio. ¿Qué tan rápido sube el nivel del agua cuando ésta ha alcanzado 5 m de profundidad?

Solución
Refiérase a la figura 2.

Paso 1
Se definen las variables, primero t y después las otras variables en términos de t.

- t: el número de minutos del tiempo que ha transcurrido desde que el agua comenzó a fluir dentro del tanque.
- h: el número de metros de la altura del agua a los t minutos.
- r: el número de metros del radio de la superficie del agua a los t minutos.
- V: el número de metros cúbicos del volumen de agua en el tanque a los t minutos. Observe que V, r y h, son funciones de t.

Paso 2
Puesto que el agua fluye dentro del tanque a una tasa de 2 m³/min, entonces \(\frac{dV}{dt} = 2 \).

Paso 3
Se desea determinar \(\frac{dh}{dt} \) cuando \(h = 5 \).

Paso 4
En cualquier tiempo, el volumen del agua en el tanque puede expresarse como el volumen de un cono, como indica la figura 2.

\[
V = \frac{1}{3} \pi r^2 h \tag{3}
\]

Como se estableció en los pasos 2 y 3, se conoce \(\frac{dV}{dt} \), y se desea determinar \(\frac{dh}{dt} \). Por tanto, se necesita una ecuación que involucre a V y h. Así, primero se expresa r en términos de h observando que, de los triángulos semejantes de la figura 2, se tiene

\[
\frac{r}{h} = \frac{4}{16} \quad \Rightarrow \quad r = \frac{1}{4} h
\]

Si se sustituye este valor de r en (3), se obtiene

\[
V = \frac{1}{3} \pi \left(\frac{1}{4} h \right)^2 (h) \quad \Rightarrow \quad V = \frac{1}{48} \pi h^3
\]

Paso 5
Al diferenciar los dos miembros de esta ecuación con respecto a t, resulta:

\[
\frac{dV}{dt} = \frac{1}{16} \pi h^2 \cdot \frac{dh}{dt}
\]

Paso 6
Ahora se sustituye 2 por \(\frac{dV}{dt} \) y se resuelve la ecuación para \(\frac{dh}{dt} \), obteniéndose

\[
\frac{dh}{dt} = \frac{32}{\pi h^2}
\]

Así,

\[
\frac{dh}{dt} \bigg|_{h=5} = \frac{32}{25\pi}
\]

\[
\approx 0.4074
\]
Al convertir metros a centímetros se tiene: 0.4074 m/min = 40.74 cm/min.

Paso 7 A continuación se escribirá la conclusión.

Conclusión: El nivel del agua sube a una tasa de 40.74 cm/min cuando el agua ha alcanzado una profundidad de 5 m.

> **EJEMPLO 2** Dos automóviles, uno va hacia el este a una tasa de 90 km/h, y el otro hacia el sur a 60 km/h, se dirigen hacia la intersección de dos carreteras. ¿A qué tasa se están aproximando uno al otro en el instante en que el primer automóvil está a 0.2 km de la intersección y el segundo se encuentra a 0.15 km de dicha intersección?

Solución Consulte la figura 3, donde el punto P es la intersección de las dos carreteras.

Paso 1

t: el número de horas del tiempo que ha transcurrido desde que los automóviles empezaron a aproximarse a P.
x: el número de kilómetros de la distancia a partir del primer automóvil a P a las t horas.
y: el número de kilómetros de la distancia a partir del segundo automóvil a P a las t horas.
z: el número de kilómetros de la distancia entre los dos automóviles a las t horas.

Paso 2 Como el primer carro se acerca a P a una tasa de 90 km/h, y x está decreciendo conforme t crece, entonces \(\frac{dx}{dt} = -90 \). De la misma manera, \(\frac{dy}{dt} = -60 \).

Paso 3 Se desea determinar \(\frac{dz}{dt} \) cuando x = 0.2 y y = 0.15.

Paso 4 Del teorema de Pitágoras

\[
z^2 = x^2 + y^2 \quad (4)
\]

Paso 5 Al diferenciar los dos miembros de (4) con respecto a t, se obtiene

\[
2z \frac{dz}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}
\]

\[
\frac{dz}{dt} = \frac{x \frac{dx}{dt} + y \frac{dy}{dt}}{z} \quad (5)
\]

Paso 6 Cuando x = 0.2 y y = 0.15, de (4) se tiene que z = 0.25. En (5) se sustituyen \(\frac{dx}{dt} \) por -90, \(\frac{dy}{dt} \) por -60, x por 0.2, y por 0.15 y z por 0.25 para obtener

\[
\left. \frac{dz}{dt} \right|_{z=0.25} = \frac{(0.2)(-90) + (0.15)(-60)}{0.25} = -108
\]

Paso 7

Conclusión: En el instante en cuestión, los carros se aproximan uno al otro a una tasa de 108 km/h.
\section*{EJEMPLO 3}

Suponga que en cierto mercado, \(x\) miles de ca
astillas de naranjas se surten diariamente cuando \(p\) dólares es el precio por ca
astilla. La ecuación de oferta es

\[px - 20p - 3x + 105 = 0 \]

Si el suministro diario decrece a una tasa de 250 ca
astillas por día, ¿a qué tasa está variando el precio cuando la oferta diaria es de 5 000 ca
astillas?

\textbf{Solución}

Sea \(t\) días el tiempo que ha transcurrido desde que el suministro diario empezó a decrecer.

Las variables \(p\) y \(x\) están definidas como funciones de \(t\) en el enunciado del problema.

Debido a que el suministro diario está decreciendo a una tasa de 250 ca
astillas por día, entonces \(\frac{dx}{dt} = -\frac{250}{1000}\); esto es, \(\frac{dx}{dt} = -\frac{1}{4}\). Se desea determinar \(\frac{dp}{dt}\) cuando \(x = 5\). De la ecuación de oferta dada, al diferenci
ar implícitamente con respecto a \(t\) se obtiene

\[p\frac{dx}{dt} + x\frac{dp}{dt} - 20\frac{dp}{dt} - 3\frac{dx}{dt} = 0 \]

\[\frac{dp}{dt} = \frac{3 - p}{x - 20}\cdot\frac{dx}{dt} \]

Cuando \(x = 5\), se deduce de la ecuación de oferta que \(p = 6\). Debido a que \(\frac{dx}{dt} = -\frac{1}{4}\), se tiene de la ecuación anterior

\[\left. \frac{dp}{dt}\right|_{p=6} = \left. \frac{3 - 6}{5 - 20}\left(-\frac{1}{4}\right) \right. \]

\[= -\frac{1}{20} \]

\textbf{Conclusión:} El precio de una ca
astilla de naranjas está decreciendo a la tasa de $0.05 por día cuando la oferta diaria es de 5 000 ca
astillas.

\section*{EJEMPLO 4}

Un avión vuela hacia el oeste con una velocidad de 500 pie/s a una altura de 4 000 pie y un rayo de luz de un faro de rastreo ubicado en tierra, incide en la parte inferior del avión. Si la luz se mantiene sobre el avión, ¿qué tan rápido gira el rayo de luz cuando el avión se en

\textbf{Solución}

 Consulte la figura 4, en la que el faro está en el punto \(L\) y en un instante particular el avión se encuentra en el punto \(P\).

Sea \(t\) segundos el tiempo que transcurre desde que la luz del faro in

\(x\): el número de pies hacia el este de la distancia horizontal del avión desde el faro a los \(t\) segundos.

\(\theta\): el número de radianes del ángulo de elevación del avión desde el faro a los \(t\) segundos.

Puesto que \(\frac{dx}{dt} = -500\), y como se desea determinar \(\frac{d\theta}{dt}\) cuando \(x = 2,000\), se considera

\[\tan \theta = \frac{4,000}{x} \]
Al diferenciar los dos miembros de esta ecuación con respecto a t se obtiene

$$\sec^2 \theta \frac{d\theta}{dt} = -\frac{4000}{x^2} \frac{dx}{dt}$$

Si se sustituye $\frac{dx}{dt}$ por -500 en la ecuación anterior y al dividir entre $\sec^2 \theta$ se tiene

$$\frac{d\theta}{dt} = \frac{2000000}{x^2 \sec^2 \theta}$$

(6)

Cuando $x = 2000$, $\tan \theta = 2$. Como $\sec^2 \theta = 1 + \tan^2 \theta$, $\sec^2 \theta = 5$. Al sustituir estos valores en (6) se tiene, cuando $x = 2000$,

$$\frac{d\theta}{dt} = \frac{2000000}{4000000(5)} = \frac{1}{10}$$

Conclusión: En el instante dado, la medida del ángulo está creciendo a la tasa de $\frac{1}{10}$ rad/s, y ésta es la rapidez con la que está girando el faro.

EJERCICIOS 2.10

En los ejercicios 1 a 8, x y y son funciones de la tercera variable t.

1. Si $2x + 3y = 8$ y $\frac{dy}{dt} = 2$, obtenga $\frac{dx}{dt}$.
2. Si $\frac{x}{y} = 10$ y $\frac{dx}{dt} = -5$, calcule $\frac{dy}{dt}$.
3. Si $xy = 20$ y $\frac{dy}{dt} = 10$, encuentre $\frac{dx}{dt}$ cuando $x = 2$.
4. Si $2 \sin x + 4 \cos y = 3$ y $\frac{dy}{dt} = 3$, obtenga $\frac{dx}{dt}$ en $(\frac{1}{2} \pi, \frac{1}{2} \pi)$.
5. Si $\sin^2 x + \cos^2 y = \frac{5}{4}$ y $\frac{dx}{dt} = -1$, calcule $\frac{dy}{dt}$ en $(\frac{1}{2} \pi, \frac{3}{2} \pi)$.
6. Si $x^2 + y^2 = 25$ y $\frac{dx}{dt} = 5$, calcule $\frac{dy}{dt}$ cuando $y = 4$.
7. Si $\sqrt{x} + \sqrt{y} = 5$ y $\frac{dy}{dt} = 3$, obtenga $\frac{dx}{dt}$ cuando $x = 1$.
8. Si $y(\tan x + 1) = 4$ y $\frac{dy}{dt} = -4$, determine $\frac{dx}{dt}$ cuando $x = \pi$.

En los problemas de tasas de variación relacionadas de los ejercicios siguientes, defina precisamente todas las variables como cantidades (números y unidades de medida). Utilice la variable t para representar el tiempo y defina las otras variables de modo que dependan de t. Asegúrese de escribir una conclusión.

9. Un niño vuela una cometa a una altura de 40 pie, y lo hace moviéndose horizontalmente a una tasa de 3 pie/s. Si la cuerda está tensa, ¿a qué tasa se afloja cuando la longitud de la cuerda suelta es de 50 pie?
10. Se infla un globo esférico de modo que su volumen se incrementa a una tasa de 5 m³/min. ¿A qué tasa aumenta el diámetro cuando éste es de 12 m?
11. Se está formando una bola de nieve de modo que su volumen se incrementa a una tasa de 8 pie³/min. Determine la tasa a la que el radio aumenta cuando el diámetro de la bola es de 4 pie.
12. Suponga que cuando el diámetro de bola de nieve, del ejercicio 11, es de 6 pie se detiene su crecimiento y comienza a derretirse a una tasa de $\frac{1}{3}$ pie³/min. Calcule la tasa a la que el radio varía cuando éste es de 2 pie.
13. Se deja caer arena en un montículo de forma cónica a una tasa de 10 m³/min. Si la altura del montículo siempre es el doble del radio de la base, ¿a qué tasa se incrementa la altura cuando ésta es de 8 m?
14. Una lámpara se encuentra suspendida a 15 pie sobre una calle horizontal y recta. Si un hombre de 6 pie de estatura camina alejándose de la lámpara a una tasa de 5 pie/s, ¿qué tan rápido se alarga su sombra?
15. En el ejercicio 14, ¿a qué tasa se desplaza la punta de la sombra del hombre?

16. Un hombre de 6 pie de estatura camina hacia un edificio a una tasa de 5 pie/s, si en el piso se encuentra una lámpara a 50 pie del edificio, ¿qué tan rápido se acorta la sombra del hombre proyectada en el edificio cuando él está a 30 pie de éste?

17. Suponga que un tumor en el cuerpo de una persona es de forma esférica. Si cuando el radio del tumor es de 0.5 cm, éste crece a una tasa de 0.001 cm por día, ¿cuál es la tasa de crecimiento del volumen del tumor en ese tiempo?

18. Una bacteria celular es de forma esférica. Si el radio de la bacteria crece a una tasa de 0.01 µm (micra) por día cuando el radio de ésta es de 1.5 µm, ¿cuál es la tasa de crecimiento del volumen de la bacteria en ese tiempo?

19. Para el tumor del ejercicio 17, ¿cuál es la tasa de crecimiento del área de la superficie cuando el radio es de 0.5 cm?

20. Para la bacteria del ejercicio 18, ¿cuál es la tasa de la superficie de la bacteria cuando su radio es de 1.5 µm?

21. Un tanque para almacenar agua tiene la forma de un cono invertido y se está vaciando a una tasa de 6 m³/min. La altura del cono es de 24 m y su radio mide 12 m. Determine qué tan rápido disminuye el nivel del agua cuando está tiene una profundidad de 10 m.

22. La longitud de un abrevadero es de 12 pie y sus extremos tienen la forma de un triángulo isósceles invertido que tiene una altura de 3 pie y su base mide 3 pie. Se introduce agua al abrevadero a una tasa de 2 pie³/min. ¿Qué tan rápido sube el nivel del agua cuando ésta tiene una profundidad de 1 pie?

23. La ley de Boyle para la expansión de una gas es \(PV = C \), donde \(P \) es la presión expresada como el número de libras por unidad cuadrada de área, \(V \) es el número de unidades cúbicas del volumen del gas y \(C \) es una constante. En cierto momento, la presión es de 3 000 lb/pie², el volumen es de 5 pie³ y el volumen crece a una tasa de 3 pie³/min. Determine la tasa de variación de la presión en ese momento.

24. La ley adiabática (sin pérdida ni ganancia de calor) para la expansión del aire es \(PV^{\gamma} = C \), donde \(P \) es la presión expresada como el número de libras por unidad cuadrada de área, \(V \) es el número de unidades cúbicas del volumen y \(C \) es una constante. En un instante específico, la presión es de 40 lb/pulg² y está creciendo a una tasa de 8 lb/pulg² cada segundo. Si \(C = 5/16 \), ¿cuál es la tasa de variación del volumen en ese instante?

25. Se arroja una piedra en un estanque tranquilo, formándose ondas circulares concéntricas que se dispersan. Si el radio de la región afectada crece a una tasa de 16 cm/s, ¿a qué tasa crece el área de la región afectada cuando su radio es de 4 cm?

26. Cierta cantidad de aceite fluye hacia el interior de un depósito que tiene forma de cono invertido a una tasa de 3 m³/min. Si el depósito tiene un radio de 2.5 m en su parte superior y una altura de 10 m, ¿qué tan rápido varía el nivel del aceite cuando éste ha alcanzado 8 m de profundidad?

27. Un automóvil se desplaza a una tasa de 30 pie/s y se aproxima a un cruce. Cuando el automóvil está a 120 pie del cruce, un camión que viaja a una tasa de 40 pie/s pasa por el cruce. El automóvil y el camión se encuentran sobre carreteras que son perpendiculares. ¿Qué tan rápido se separan el automóvil y el camión 2 s después de que el camino deja el cruce?
28. Una cuerda está atada a un bote sobre la superficie del agua y una mujer, en el muelle, tira del bote a una tasa de 50 pie/min. Si sus manos están 16 pie sobre el nivel del agua, ¿qué tan rápido se aproxima el bote al muelle cuando la cantidad de cuerda suelta es de 20 pie?

29. Esta semana, en una fábrica se produjeron 50 unidades de un artículo determinado, y la cantidad producida aumenta a una tasa de 2 unidades por semana. Si $C(x)$ dólares es el costo total por producir x unidades y $C(x) = 0.08x^3 - x^2 + 10x + 48$, determine la tasa actual a la que el costo de producción crece.

30. La demanda de cierto cereal para el desayuno está dada por la ecuación de demanda $px + 50p = 16,000$, donde x miles de cajas de cereal son demandadas cuando el precio por caja es de p centavos. Si el precio actual de la caja de cereal es de 1.6 y éste se incrementa a una tasa de 0.4 centavos cada semana, calcule la tasa de variación de la demanda.

31. La ecuación de oferta para cierta mercancía es $x = 1,000\sqrt{3p^2 + 20p}$, donde cada mes se suministran x unidades cuando p dólares es el precio por unidad. Determine la tasa de variación de la oferta si el precio actual es de 20 por unidad y el precio crece a una tasa de 0.50 por mes.

32. Suponga que n trabajadores se necesitan para producir x unidades de cierta mercancía, y $x = 4n^2$. Si la producción de la mercancía este año es de 250,000 unidades y la producción crece a una tasa de 18,000 unidades por año, ¿cuál es la tasa actual a la que la fuerza laboral debe incrementarse?

33. La ecuación de demanda para cierto tipo de camisa es $2px + 65p - 4,950 = 0$, donde x cientos de camisas son demandadas por semana cuando p dólares es el precio por camisa. Si una camisa se vende por 30 esta semana, y el precio crece a una tasa de 0.20 por semana, calcule la tasa de variación de la demanda.

34. La medida de uno de los ángulos agudos de un triángulo rectángulo decrece a una tasa de $\frac{1}{36} \pi$ rad/s. Si la longitud de la hipotenusa es constante y de 40 cm, determine qué tan rápido varía el área del triángulo cuando la medida del ángulo agudo es de $\frac{1}{6} \pi$ rad.

35. Dos camiones, uno de los cuales viaja hacia el oeste y el otro hacia el sur, se aproximan a un crucero. Si los dos camiones se desplazan a una tasa de k km/h, muestre que ellos se aproximan a una tasa de $k \sqrt{2}$ km/h cuando cada uno de ellos se encuentra a m kilómetros del crucero.

36. Un depósito horizontal para agua mide 16 m de longitud y sus extremos son trapecios isósceles con una altura de 4 m, base menor de 4 m y base mayor de 6 m. Se vierte agua en el depósito a una tasa de 10 m³/min. ¿Qué tan rápido sube el nivel del agua cuando ésta ha alcanzado una profundidad de 2 m?

37. En el ejercicio 36, si el nivel del agua decrece a una tasa de 25 cm/min cuando el agua tiene una profundidad de 3 m, ¿a qué tasa sale el agua del depósito?

38. Una escalera de 7 m de longitud está apoyada sobre una pared. Si la base de la escalera se empuja horizontalmente hacia la pared a una tasa de 1.5 m/s, ¿qué tan rápido se desliza hacia arriba la parte superior de la escalera sobre la pared cuando su base se encuentra a 2 metros de la pared?
39. Una escalera de 20 pie de longitud está recargada sobre un terraplén inclinado a 60° con respecto a la horizontal. Si la base de la escalera se mueve horizontalmente hacia el terraplén a una tasa de 1 pie/s, ¿cuál es la tasa de variación de la medida del ángulo agudo formado por la escalera con el piso cuando la base está a 4 pies del terraplén.

40. Una escalera de 30 pie de longitud está apoyada contra una pared, de modo que su extremo superior se desliza hacia abajo a una tasa de $\frac{1}{2}$ pie/s, ¿cuál es la tasa de variación de la medida del ángulo agudo formado por la escalera con el piso cuando el extremo superior está a 18 pie sobre el piso?

41. Un avión que vuelca con rapidez constante a una altura de 10 000 pie sobre una trayectoria recta que lo llevará directamente sobre un observador en tierra. En un instante dado, el observador nota que el ángulo de elevación del avión es de $\frac{1}{3}\pi$ rad y aumenta a una tasa de $\frac{1}{60}$ rad/s. Determine la rapidez del avión.

42. Un bote está ubicado a 4 millas de la costa y tiene un radar transmisor que gira 32 veces por minuto. ¿Qué tan rápido se desplaza la onda emitida por el radar a lo largo de la costa cuando dicha onda forma un ángulo de 45° con la costa.

43. Después de la explosión de despegue, un transbordador espacial se eleva verticalmente y un radar, ubicado a 1 000 yarda de la rampa de lanzamiento, sigue al transbordador. ¿Qué tan rápido gira el radar 10 segundos después de la explosión de despegue si en ese instante la velocidad del transbordador es de 100 yarda/s encontrándose éste a 500 yarda del suelo?

44. Se vierte agua en un depósito que tiene forma de cono invertido a una tasa de 8 pie³/min. El cono tiene una altura de 20 pie y un diámetro de 10 pie en la parte superior. Si hay una fuga en la parte inferior del depósito y el nivel del agua sube a una tasa de 1 pulg/min cuando el agua tiene una profundidad de 16 pies, ¿qué tan rápido escapa el agua del depósito?

45. Muestre que si el volumen de un globo decrece a una tasa proporcional al área de su superficie, el radio del globo se contrae a una tasa constante.

REVISIÓN DEL CAPÍTULO 2

- **SUGERENCIAS PARA LA REVISIÓN DEL CAPÍTULO 2**

1. Defina la recta tangente a la gráfica de una función en el punto $P(x_1, f(x_1))$.
2. Defina la recta normal a una gráfica en un punto dado.
3. Defina la derivada de una función f en un número x del dominio de f.
4. Establezca dos fórmulas que proporcione $f'(x_1)$, la derivada de la función f en el número x_1.
5. ¿Cuál es la interpretación geométrica de la derivada de la función f en el número x_1?
6. ¿Cuál es la notación de Lagrange para la derivada de la función f en el número x_1? ¿Cuál es la notación de Leibniz para la derivada?
7. ¿Es posible que una función sea diferenciable en un número y no sea continua en ese número? Si la respuesta es sí, dé un ejemplo. Si la respuesta es no, establezca la razón.